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On a "Structure Intermediate Between Quasiperiodic 
and Random" 
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Tiffs paper proves rigorously that the structure factor of the "structure inter- 
mediate between quasiperiodic and random" introduced by Aubry, Godr6che, 
and Luck is purely singular continuous apart from a delta function at zero for 
"most" choices of the parameters. The result is based on a proof that a flow 
tinder a step function over an irrational circle rotation is weakly mixing for 
"most" parameters, and on the Wonderland Theorem. 
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periodic approximation; weak mixing; singular continuous spectrum. 

1. I N T R O D U C T I O N  

Aubry et aIJ ~' 2~ have considered a model  of  a toms on the line defined by 
an irrational rota t ion ~ on the circle T = g~/7/in which the positions x,, of  
the atoms are given by 

x, , -x , ,_l  = 1 + ~lto.a~(n~) (1) 

where 0 < fl < 1 and Xo, ~ ~ R are parameters.  Changing  Xo translates the 
structure. They have shown by a combina t ion  of  scaling arguments  and 
numerical work that for fl = 1/2, ~ = r - t [  r = (x/~ + 1)/2 ], and irrational 
the "structure factor" 

2 
S : =  lim (2L) - l  ~_ e -2niqxk (2) 

L ~  xk~ [ L,L] 
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is a purely singular continuous measure (apart from a delta function at 0). 
More generally they suggest that S is purely discrete if and only if fl = ka 
(mod 1) for some k e 7/(the "Kesten condition ''~3~ and that it is continuous 
if the Kesten condition is not satisfied. The interest of the structure factor 
is that it describes how the model looks in diffraction experiments/4"5~ 
Since S is absolutely continuous for random systems and purely discrete for 
quasiperiodic systems, Aubry et al. called their structure "intermediate 
between quasiperiodic and random". 

The main interest, in my opinion, of the work by Aubry et al. is their 
use of scaling to detect singular continuous spectrum. 

This paper proves that S is purely singular continuous apart from the 
delta function at 0 for every irrational ~, every fl, and generic ~ (Corollary 
5.1). Here "generic ~" means: for ~ in a dense Gj, i.e., in a dense countable 
intersection of open sets. We also prove that S is continuous (apart from 
the delta function at 0) for all irrational ~, Lebesgue-a.e. fl--depending on 
or--and all ~ such that 1/( is not rationally dependent on ~. In the special 
case that ~ has bounded partial quotients the "Lebesgue-a.e. fl" can be 
replaced by "all fl such that fl#ko~ for any k e Z "  (Corollary 4.1). In 
particular, this proves that S is continuous for the parameters of fl = 1/2, 

= r - z  considered by Aubry et al. 
The principal ingredient for these results is a fairly complete deter- 

mination of the parameters for which the flow under a step function is or 
is not weakly mixing (see Section 4). Then the Wonderland Theorem 16j 
gives that S is purely singular continuous apart from the delta function at 
0 for generic ~ (Proposition 5.2). 

The structure of the paper is as follows. Section 2 recalls the definition 
of a flow under a function, sets up notation, and states some facts that will 
be needed later. Section 3 explains how S is related to the flow under a step 
function. Section 4 discusses for which parameters this flow is weakly mixing. 
This implies the results about the continuity of S. Section 5 uses the 
Wonderland theorem to prove that the flow has purely singular continuous 
spectrum for generic ct. It implies that S is purely singular continuous apart 
from a delta function at 0 for all fl, all irrational ~, and generic 0~. The last 
section contains some comments on the results. 

2. THE  F L O W  U N D E R  A F U N C T I O N  

If ct e T = • \7/and f :  T --* R satisfies 0 < a <~ f ( x )  <<, b for some a, b and 
all x e ~, then the flow under the function f over the rotation o~ is the flow 
T, acting on F := { (x, y) l x  e T, 0 <~ y < f ( x ) }  by letting y increase with 
unit speed, and jumping from ( x , f ( x ) )  to ( x + ~ ,  0) whenever y hits the 
graph o f f .  c71 The Lebesgue measure v on F is invariant under T,. The flow 
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is ergodic if and only if 0c is irrational. ~ It is not hard to see that the flow 
is uniquely ergodic if it is ergodic, i f f  is Riemann integrable. 

Let Jr = L2(F, v) and denote by U, the strongly continuous group of 
unitary operators on Jg  associated to 7", by U , f : = f o  T, .  An eigenfunction 
(for the flow, or of U) is a de ~ ~f~ for which there is a 2 e R (the eigenvalue) 
such that 

U,d? = e2~i;"de (3) 

Eigenfunctions can be chosen such that (3) holds for all (x, y) ~ F and all 
t (ref. 7, Section VI.2). If de is an eigenfunction with eigenvalue 2, then 
e-2~;J-"de(x, y) is independent of y. So 

~b(x) := e-Z'~i~'Yd?(x, y)  (4) 

is a measureable function on T, which is in L-'(~-) since $ e ~ .  It satisfies 

~,(x + 0c) = e-'"i~';"~q,(x) (5) 

Conversely every ~ e L2(y) satifying (5) gives an eigenfunction through (4) 
(ref. 7, Section VI.3). The flow is called weakly mixing if the constants are 
the only eigenfunctions of the flow. 

Every r e -iF defmes a spectral measure lt,~ on R by 

I e ~ m  d/t,(2) = ($, UAb) (6) 

This is a real, bounded measure. Like any measure, it can be decomposed 
into a discrete part, an absolutely continuous part, and a singular 
continuous part. If de is an eigenfunction with eigenvalue 2, then p~ is a 
Dirac delta function at 2. The smallest closed subspace of J f  containing all 
eigenfunctions is denoted by Jfd- A spectral measure It~ is purely discrete 
if and only if de e -~a. Note that Jfa is never empty, since the constants are 
eigenfunctions for 2 = 0. For this reason it is convenient to. introduce the 
symbol J r •  to denote the orthogonal complement in ~ of the constant 
functions. Similarly, "~.~c and Jg~r are the largest closed subspaces for which 
lt,b is absolutely continuous and purely singularly continuous, respectively. 
The three spaces are invariant under U and ~ = ~ a + ~ c + ~ f ~ c .  If 

= Jfd, then the flow is said to have purely discrete spectrum; if Jfa 
consists only of the constant functions then the flow is said to have purely 
continuous spectrum (strictly speaking, on ~r This means that p~ is 
continuous for all ~b with ~ de dv = 0, or, equivalently, that for all ~b e J f  the 
only possible discrete part of it,~, is a delta function at 0. If the flow has 
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purely continuous spectrum then it is said to have purely singular 
continuous spectrum if ~ = ~ .  This means that lt~ is purely singular con- 
tinuous for all ~b ~ Jg apart from a possible delta function at 0, which is 
absent if and only if ~ ~b dv = 0, i.e., if ~b E ~f• 

3. THE FLOW AND THE STRUCTURE FACTOR 

The structure factor (2) is the Fourier transform (in the sense of 
tempered distributions) of the autocorrelation 

y =  lim (2L)-- '  ~ 0-,~--,-k (7) 
L ~  xi .x~.E[--L,L] 

of the measure it = ~ , ,  ~ ,z Ox, .151 Note that y exists by the unique ergodicity 
of irrational circle rotations: 7 = Z n,,O,, where the summation is over all 
possible vectors a of the form .x ) -xk  and n,, is the density with which a 
occurs in the structure. It is clear that y does not change if the structure is 
translated [nor  when na is replaced by n~ + 0 in (1)]. The structure factor 
S =  ~ has a delta function at 0 of weight n o, the particle densityJ 5~ 

This section explains how S can be obtained as a limit of spectral 
measures of the flow under the function f ( x ) =  1 +~lto./j~(x). That will 
prove the following proposition. 

P r o p o s i t i o n  3.1. If the flow under f is weakly mixing, then S is 
continuous apart from the delta function at 0. If the flow has purely 
singular continuous spectrum on .J( J-, then S is purely singular continuous 
apart from the delta function at 0. 

Proof. Let co >~ 0 be a C'~--function with support in Ix[ < q < 1. Put a 
copy of co at every x,,; i.e., consider the function 

p : = ( O  * lt  

where �9 denotes convolution. Its autocorrelation is given by r 

71,(x) = lim (2L) - t  I L 
L ~ , z c  - -  L 

= (co * ~ )  * 7' 

p( y + x ) p(y) dy 

(8) 

where c b ( x ) = c o ( - x )  and the bar denotes complex conjugation. Now the 
structure factor of p is 9/, = ]cbl 2 9. 

Observe that Icb]2>0 in some neighborhood ( - a ,  a) of the origin, 
since c b ( 0 ) = ~ o d x > 0 .  For e > 0  the function co~(x ) :=e- lco (x /e )  has 
Fourier transform ~b~(() = ecb(e(), so lob(()] 2 > 0 for ( ~ ( - a/e, a/e). Hence 
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~) is purely (singular) continuous on IR\{0} if and only if ~,, is purely 
(singular) continuous on ( -ale, O) w (0, a/e) for every e > 0. 

Define g~ ~ Jg by 

g~(x, Y) := l o ~ ( Y -  f(x))  

if O<~ y < q  
if f ( x ) -pT< y<.%g(x) 
otherwise 

(9) 

Choose Uo = 0. If Pc = co �9 lt, then p,(t) = ( U, g~)(0, 0); replacing (0, 0) by 
T,o(O, O) translates the structure. Now 

L 

ym(x)= lim ( 2 L ) - ' I  p,(t+x)p, ,( t)dt  (10) 
L - -  : r  - - L  

L 

= lira (2L)-~ f U,(~~U.,.g~.)(O,O)dt (11) 
L ~ ~ - - L  

=(g~, U,.g~) (12) 

Equation (12) holds because (i) the flow is uniquely ergodic and (ii) the 
function g~ is continuous (ref. 8, Theorem 1.8.2). 

If the flow is weakly mixing (has purely singular continuous spectrum 
on Jg• then the Fourier transform of (12) is a measure that is purely 
(singular) continuous apart from a delta function at 0. This also shows that 
S =  ~3 is purely discrete if the flow has purely discrete spectrum. | 

The significance of Proposition 3.1 is that it links S to spectral 
measures of a dynamical system--the flow under f - - t h a t  can be explicitly 
analyzed. Given any configuration of points (in any dimension) with a 
hard-core condition, one can consider the set of all its translates and close 
it in the topology of hard-sphere particle systems (see, e.g., ref. 9, Appendix 
B). This gives a compact metric space with an action of ~a by translations. 
Dworkin c~21 showed in this general setup that the Fourier transform of the 
autocorrelation of(8)  is a spectral measure of the unitary group action of 
R ' /on the L2-space of an ergodic measure on this metric space. 

4. SPECTRUM OF THE FLOW 

This section studies for which parameters 0t, fl, ~ the flow under the 
function 1 + ~1Eo,/~1(x) is weakly mixing or not. The flow is weakly mixing 
if (5) has no solutions ~b~L2(T) for any 2 ~ 0 ;  it is not weakly mixing if 
there is 2 4:0 for which (57 has a solution in L~-(T). To make use of results 
from ergodic theory we need some definitions. 
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A measurable function g: T ~ T is called a multiple of a coboundary 
(in, e.g., ref. 11 ) or a projective coboundary (in, e.g., ref. 12) if there is an 
a ~ R for which there is a measurable ~,: -g ---, T such that 

~(x+e)=e2"i"g(x)  O(x) (13) 

(Lebesgue-a.e.). The function g is called a coboundary if there is a 
measurable solution to (13) with a = 0 .  Proving existence or nonexistence 
of solutions to (13) for given g and e is a classic problem in ergodic theory 
(see, e.g., refs. 13-15). 

The question for which parameters e, fl, s the function g/j,~.(x):= 
exp{2nisl t0,/j~(x)} is a multiple of a coboundary has been studied, among 
others, by MerrillJ ~1 Since f ( x )  = ~1 to, m(x) + 1, Eq. (5) can be written as 

~J(X + e) = e'-~i~'g/j. ),r O(x) (14) 

and we see that 2 is an eigenvalue of the flow under f if and only if gp, ~r 
is a particular multiple of a cobounday, namely with a = 2. In this way, 
results from ref. 11 can be used to prove that the flow under f is or is not 
weakly mixing for certain parameters. [Note  that [if(x)[ is constant a.e. 
since e is irrational, so ~ e L-'(T) if ff is measureable.] 

The solvability of(13) depends on the continued-fraction representation 
[a~, a2,...] of e. The a,, are called partial quotients of e. We say that e has 
bounded partial quotients if there is an N such that a, < Nfor  all n. Otherwise 
it has unbounded partial quotients. Lebesgue-a.e. e has unbounded partial 
quotients (ref. 16, Theorem 196). A continued fraction is called periodic if 
there are integers k, L > 0 such that a~---az+ k for all l > L. A number e has 
a periodic continued-fraction representation if and only if it is a quadratic 
number, i.e., if pa2 + qe + r = 0 for some p, q, r e Z (ref. 16, Theorem 176). 

Proposit ion 4.1. For every irrational e, if f l=  {ke} for some 
integer k, then for all ~ R the flow u n d e r f h a s  eigenvalues 2=(mo~+n)/ 
(~{ke} + 1), with n, m~7/. 

Proof. If fl = {ke} then for all s e g~ the function gp..,, is a multiple of 
a coboundary with a = - s { k e }  + m e + n , m ,  ne7/  [see pp. 326-327 of 
ref. 11; the solutions to (13) are also given there-]. If e, f l=  {ke} and ~ are 
fixed, then s = 2 ~  and the condition that a = 2  imply 2 = ( m e + n ) /  
(~{ke} + 1). I 

The numbers e and 1/~ are called rationally independent if 
me + n/~ = p has no solutions m, n, p ~ 7/ except m = n = p = 0. Otherwise 
they are called rationally dependent. Note that rational independence 
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implies that ?, is irrational if 0c is irrational. The next proposition shows that 
the flow u n d e r f i s  not weakly mixing if 0c and 1/~ are rationally dependent. 

Proposition 4.2. For  every irrational a and every fl, the flow 
under f has an eigenvalue it = m/?, for some m e 7/ if  and only if a and l/?, 
are rationally dependent. 

Proof. If i t=m/?,  is an eigenvalue of the flow, then there is by (5) a 
~b e L2(ql -) such that 

O ( x + e )  =e2"iaO(x) (15) 

since f = ?,1 co./~ + 1. This means that it is an eigenvalue of rotation over ~. 
Hence i t = r o c + s , r , s ~ Z  (see, e.g., ref. 7) and 0c and 1/~ are rationally 
dependent. 

Conversely, if 0c and 1/?, are rationally dependent, then m/?, = r~ + s for 
some m, r, s e 72. Since r0c + s is an eigenvalue of rotation over 0c, there is a 
qs ~L'-(-g) such that 

O(x + ~) = e 2~i('~+'~o(x) (16) 

and this 0 satisfies (5) i f i t=m/~ .  | 

P r o p o s i t i o n  4.3. If 0c has bounded partial quotients and is 
rationally independent of 1/~, then the flow u n d e r f i s  weakly mixing if and 
only if fl:/: {kcc} for all k 6 Z .  

Proof. If the flow under f is weakly mixing, then f l # { k s }  by 
Proposition 4.1. 

Conversely, if fl :/: k0q then Theorem 2.4 in ref. 11 gives that g/~. s is not 
a multiple of a coboundary if s r 0. Since ~ > 0, s = 27, = 0 (mod 1 ) gives 
2 = m/?, for some m e Z. But by Proposition 4.2,/l = m/?, is an eigenvalue of 
the flow under f if and only if e and ?, are rationally dependent. II 

Note that this proposition shows that ~ is continuous apart from a 
delta function at'0 in the case fl = 1/2, ~ = r -2 if and only if 1/?, is rationally 
independent of 0c. These are the parameters considered by Aubry et al. (L 21 
Since almost every a has unbounded partial quotients Proposition 4.3 
applies to a set of ~'s of Lebesgue measure 0. Note, however, that Proposi- 
tion 4.3 suffices to prove the results in the next section. 

To treat the case of 0o's with unbounded partial quotients, we shall use 
the following result of Katok and Stepin/14) The condition on e is equivalent 
to 0c having unbounded partial quotients. 
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Proposit ion 4.4.  ~'4' Suppose there is a sequence p,,/q,, of 
irreducible fractions such that lim . . . . .  q~, [oc- p,,/q,,] =0.  Suppose that fl 
satisfies 

c / I t - -  ] 

lim sup min q,, I f l -k /q , , I  > 0  (I7) 
n ~ ~ k ~ 0 

Let h(x):=r/ ,  l to./~(x)+q21tp .,~(x), where [q , l=  [q2[ = 1 and q~ 4=~12. 
Then the equation 

~,(x + ~)=h(x)~O(x) (18) 

has no nonzero solutions O eL2(T). 

P r o p o s i t i o n  4.5. The set B : = { f l e - ~ l f l  satisfies (17)} has 
Lebesgue measure 1. 

Proof. Since ~ has unbounded partial quotients, we can assume that 
q,,/q,,+, < 1/2 for all n by taking a subsequence of the p,,/q,,. Let 5 <  1/4. 
Then B o B '  := {fl [ l imsupj_~  minqJ_sd [qjfl-k[-..<6}. We will show that 
the Lebesgue measure IB'I of B' is zero. 

�9 q - - I  :c ~- B Let Bj:={f l lmxn-~;=olqj f l -k l<<.6 }. Then B ' = ~ j = , [ " l k = o  j+k. 
Note that B i consists of qj closed intervals of length 25/qj. If I is any inter- 
val. then [Bj c~ II is not more than the number of intervals of B i intersecting 
I times 26/q s, i.e., IBj n l[ <~ [-qj Ill-] 25/qj, where I-x-] is the integer satisfy- 
ing I-x-] - 1 ~< x < I-x-]. Hence 

18j n B j + ,  n . . .  c, s j + , l  

<~ gj [-qj +125/qj 7[-qj + ?.26/qj + , 7 " "  [-qj + k25/qj + ~._ ,-] 26/qj +~. 

<~ qj(qj+ ,26/qj + 1 )(qj+226/qj+ 1 + I ) . . .  (qj+k25/qj+k_ 1 + 1 ) 25/qi+k 

-..<(25 + ~)k 25 ~ 0 as k ~ o v  

This proves that IB'[ =0.  II 

P r o p o s i t i o n  4.6. If ~ has unbounded partial quotients, then for 
Lebesgue-a.e. fl the flow under f is weakly mixing for all ~ such that 1/~ is 
rationally independent of ~. 

Proof.. Let ~ have unbounded partial quotients and suppose that 1/4: 
is rationally independent of ~. Let f l~B;  the set B has full Lebesgue 
measure by Proposition 4.5. 

Suppose the flow is not weakly mixing. Then there is a 2 # 0  and a 
~L2(1 -) such that (5) holds. Proposition 4.4 shows this can only happen 

if qj =r/2 where r h = e  ~-~iJ'~l +r and rl2=e 2"i~'. It follows that 2 = m / ~  for 
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some m e 7/. But then ~ and 1/~ are rationally dependent by Proposition 
4.2. | 

Corollary 4.1. If 0c is rationally independent of 1/4, then the struc- 
ture factor S is a continuous measure apart from a delta function at 0: 

(i) If ~ has bounded partial quotients, if and only if fl ~ kcc (rood 1) 
for any integer k. 

(ii) If cc has unbounded partial quotients, for Lebesgue-a.e. ft. 

Proposition 4.6 also follows from results by Veech ~'5~ and Steward,'171 
(see ref. 11 and pp. 792-793 in ref. 18). In fact, these results give the slightly 
stronger conclusion that the flow is also weakly mixing for all irrational ~, 
all 4 such that I/4 is rationally independent of ~, and all rational fl 
(Theorem 1.12.5.d in ref. 18). Note, however, that we have not excluded the 
possibility that the flow can fail to be weakly mixing for some ~ with 
unbounded partial quotients, a ~ such that 1/4 is rationally independent of 
~, and a fl that is not a multiple of ~. 

5. P U R E L Y  S I N G U L A R  C O N T I N U O U S  S P E C T R U M  

Simon's Wonderland Theorem c61 can now be used to prove that for 
generic cc the flow has purely singular continuous spectrum on J r ' .  
KnilP '91 has recently used the Wonderland theorem to give a new proof 
prove of the fact that, in the weak topology, measure preserving transfor- 
mations generically have purely singular continuous spectrum in the 
orthocomplement of the constant functions. The Wonderland Theorem can 
be formulated as follows. Le t /T  be a complete metric space of self-adjoint 
operators on a separable Hilbert space for which convergence in the metric 
implies strong resolvent convergence. Suppose the sets of operators that 
have purely continuous spectrum and purely discrete spectrum are dense in 
~'. Then there is a generic set in ~" of operators that have purely singular 
continuous spectrum. (Recall that a set is called generic if it is a dense G6.) 

Propos i t ion  5.1. Suppose that for some fl, 4 the flow is weakly 
mising for a dense set of a. Then there is a generic Ap, r c T such that the 
flow with parameters ~, fl, 4 has purely singular continuous spectrum on 
J6 • for all oc~A/~,r 

Proof. Note that d f  depends on fl and 4 but not on 0c. Take J r  J- as 
Hilbert space. Write U 7 to stress the dependence on ~. By Stone's theorem 
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there is a self-adjoint operator C ~ on ~ such that U~ = exp(2rdtC% The 
d ~ of C ~, defined by spectral measures ;u~ 

f e 2"'~' d/x~ = (~b, e2'~"c'q~) 

(see e.g., p. 263 in ref. 20), coincide with those defined for U,  in (6). Let 
.if'= { C" I ~ e 3-} with the metric of ~-. If ct,, ~ ~ in ~-, then UT" ---, U~ 
strongly in J f  for each t. This implies that C~"~ C ~ in strong resolvent 
sense (see, e.g., Theorem VIII.21 in ref. 20). 

By the hypothesis of weak mixing, there is dense set of U~ with purely 
continuous spectrum on ..r177 For  rational ct the flow is quasiperiodic (T 
partitions into finitely many intervals on which the period is constant) and 
therefore has purely discrete spectrum. Hence the Wonderland Theorem 
implies the conclusion of the theorem. | 

Proposition 5.2. For  every f l ~ T  and every irrational ~ there is a 
generic set Ap. r c T such that for all ~ ~ Ap. r the flow with parameters a, 
fl, ~ has purely singular continuous spectrum on J r  J-. 

Proof The numbers xp = x/~ (mod 1), with p a prime number, are 
rationally independent. There is at most one prime p, such that m%, = kfl 
(mod 1 ) for some non-zero integers m, k, and at most one prime p_, such 
that %_, is rationally dependent on 1/~. Hence there is a prime P3 such that 
~= c% is rationally independent o f f l  and 1/~. Then mo%=kfl (mod I) has 
no solutions in Y other than m = k = 0. Since any quadratic number has a 
periodic continued fraction and hence bounded partial quotients, the flow 
under f with parameters na, fl, ~ is weakly mixing by Proposition 4.3. 
The numbers net are dense in T. Hence Proposition 5.1 gives the desired 
result. I 

C o r o l l a r y  5.1. For every flEql- and every irrational 4 the structure 
factor S is a purely singular continuous measure apart from a delta func- 
tion at 0 for a generic set of a's. 

6. D I S C U S S I O N  

To conclude, we would like to mention some results from the 
literature. Von Neumann ~ proved that the flow under f is weakly mixing 
for a// irrational ~ if f is piecewise C' with points of discontinuity xj ..... x,, 
at which (i) the left and right limits o f f '  exist and (ii) it has jumps G =  
lim.,.x.,.,f(xi)-lim.,.~_,.,j'(xi) such that ~'i'= ~ ~ ;~0 .  This shows that it is not 
really remarkable for a model of atoms on the line of the form u,, - u,,_ x = 
f(noO to have a structure factor that is continuous apart from the delta 
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function at zero. Von Neumann (7) gives an example of a continuous 
function for which the flow is weakly mixing for certain ~. Indeed, he 
conjectures that the flow should be weakly mixing for "most" continuous 
functions. In this direction Ko~ergin (2~) has proved that for every irrational 

and every Lt-function f > 0 on T there exists a continuous function Af 
with sup.,.~r IAf(x)L arbitrarily small such that the flow under f + A f  is 
strongly mixing, hence weakly mixing. This shows that discontinuities in f 
are not necessary for weak mixing. 

Ko~ergin (22) has also shown that the flow is not strongly mixing i f f  
has bounded variation. It follows that J/~c ~ ~ (cf. ref. 23, p. 50) i f f ( x ) =  
1 +~lto.p)(x ) whenever ~, fl, and ~ are a such that the flow under f is 
weakly mixing. So if lt is replaced by p of (8), which amounts to modeling 
the structure by electron clouds instead of pointlike atoms, then the struc- 
ture factor (i.e., the Fourier transform of yp) typically has a singular 
continuous part whenever the flow is weakly mixing. Here "typically" 
means that every ball in ocf around g,o [g~ = gl in (9)] contains a g'o, for 
which the structure factor has a singular continuous part. 
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