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On a “Structure Intermediate Between Quasiperiodic
and Random”
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This paper proves rigorously that the structure factor of the “structure inter-
mediate between quasiperiodic and random” introduced by Aubry, Godréche,
and Luck is purely singular continuous apart from a delta function at zero for
“most” choices of the parameters. The result is based on a proof that a flow
under a step function over an irrational circle rotation is weakly mixing for
“most™ parameters, and on the Wonderland Theorem.
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1. INTRODUCTION

Aubry et al'"~?" have considered a model of atoms on the line defined by
an irrational rotation « on the circle T =R/Z in which the positions x, of
the atoms are given by

X=X, =14l p)(na) (1)

where 0 < f< 1 and x,, ¢ € R are parameters. Changing x, translates the
structure. They have shown by a combination of scaling arguments and
numerical work that for f=1/2, a=7"'[7= (\/g-i- 1)/2], and irrational &
the “structure factor”

S:= llm (2L)—l Z e—2niq,\-k (2)
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is a purely singular continuous measure (apart from a delta function at 0).
More generally they suggest that S is purely discrete if and only if f=ka
(mod 1) for some k € Z (the “Kesten condition”*’ and that it is continuous
if the Kesten condition is not satisfied. The interest of the structure factor
is that it describes how the model looks in diffraction experiments.‘®>
Since S is absolutely continuous for random systems and purely discrete for
quasiperiodic systems, Aubry et al. called their structure “intermediate
between quasiperiodic and random”.

The main interest, in my opinion, of the work by Aubry ef a/. is their
use of scaling to detect singular continuous spectrum.

This paper proves that S is purely singular continuous apart from the
delta function at 0 for every irrational £, every f8, and generic a (Corollary
5.1). Here “generic «” means: for o in a dense G, i.e, in a dense countable
intersection of open sets. We also prove that S is continuous (apart from
the delta function at 0) for al/l irrational «, Lebesgue-a.e. f—depending on
o—and all & such that 1/¢ is not rationally dependent on «. In the special
case that « has bounded partial quotients the “Lebesgue-a.e. f” can be
replaced by “all § such that f#ka for any keZ” (Corollary 4.1). In
particular, this proves that S is continuous for the parameters of f=1/2,
a =12 considered by Aubry ef al.

The principal ingredient for these results is a fairly complete deter-
mination of the parameters for which the flow under a step function is or
is not weakly mixing (see Section 4). Then the Wonderland Theorem‘®
gives that S is purely singular continuous apart from the delta function at
0 for generic o (Proposition 5.2).

The structure of the paper is as follows. Section 2 recalls the definition
of a flow under a function, sets up notation, and states some facts that will
be needed later. Section 3 explains how S is related to the flow under a step
function. Section 4 discusses for which parameters this flow is weakly mixing.
This implies the results about the continuity of S. Section 5 uses the
Wonderland theorem to prove that the flow has purely singular continuous
spectrum for generic «. It implies that S is purely singular continuous apart
from a delta function at 0 for all §, all irrational &, and generic a. The last
section contains some comments on the results.

2. THE FLOW UNDER A FUNCTION

Ifae T=R\Z and f/: T — R satisfies 0 < ¢ < f(x) < b for some a, b and
all xe T, then the flow under the function f over the rotation « is the flow
T, acting on I':={(x, y) | xeT,0< y < f(x)} by letting y increase with
unit speed, and jumping from (x, f(x)) to (x+a, 0) whenever y hits the
graph of /.'”) The Lebesgue measure v on I is invariant under T,. The flow
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is ergodic if and only if « is irrational.!”’ It is not hard to see that the flow
is uniquely ergodic if it is ergodic, if fis Riemann integrable.

Let s = L*(I", v) and denote by U, the strongly continuous group of
unitary operators on J associated to T, by U, f:= f- T,. An eigenfunction
(for the flow, or of U) is a ¢ € # for which there is a A € R (the eigenvalue)
such that

U,¢=e2m'}.l¢ (3)

Eigenfunctions can be chosen such that (3) holds for all (x, y)e I and all
t (ref. 7, Section VI2). If ¢ is an eigenfunction with eigenvalue /1, then
e 2"*¥¢(x, y) is independent of y. So

Y(x) :=e " (x, y) (4)
is a measureable function on T, which is in L3(T) since ¢ € #. It satisfies
Ylx +a) =™ ¥ (x) (5)

Conversely every € L*(T) satifying (5) gives an eigenfunction through (4)
(ref. 7, Section VL3). The flow is called weakly mixing if the constants are
the only eigenfunctions of the flow.

Every ¢ € # defines a spectral measure u, on R by

[ e duy(2)=(4, U9 (6)

This is a real, bounded measure. Like any measure, it can be decomposed
into a discrete part, an absolutely continuous part, and a singular
continuous part. If ¢ is an eigenfunction with eigenvalue A, then u, is a
Dirac delta function at A. The smallest closed subspace of # containing all
eigenfunctions is denoted by ;. A spectral measure p, is purely discrete
if and only if ¢ € /#,. Note that J, is never empty, since the constants are
eigenfunctions for 1=0. For this reason it is convenient to introduce the
symbol #* to denote the orthogonal complement in # of the constant
functions. Similatly, /. and J_ are the largest closed subspaces for which
4 15 absolutely continuous and purely singularly continuous, respectively.
The three spaces are invariant under U and 5 =+ # + 4. If
# =, then the flow is said to have purely discrete spectrum; if J,
consists only of the constant functions then the flow is said to have purely
continuous spectrum (strictly speaking, on # ). This means that u, is
continuous for all ¢ with jq) dv =0, or, equivalently, that for all ¢ € # the
only possible discrete part of y, is a delta function at 0. If the flow has
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purely continuous spectrum then it is said to have purely singular
continuous spectrum if . = (. This means that u, is purely singular con-
tinuous for all ¢ € # apart from a possible delta function at 0, which is
absent if and only if | ¢ dv=0, ie. if pc A+

3. THE FLOW AND THE STRUCTURE FACTOR

The structure factor (2) is the Fourier transform (in the sense of
tempered distributions) of the autocorrelation

y=1lim QL) Y 6, (7)
L= xj.xpe[—L L]

of the measure u =Y, ., d,,."*) Note that y exists by the unique ergodicity
of irrational circle rotations: y =3 n,d,, where the summation is over all
possible vectors a of the form x;—x, and n, is the density with which «
occurs in the structure. It is clear that y does not change if the structure is
translated [nor when na is replaced by na+ 6 in (1)]. The structure factor
S'=17 has a delta function at 0 of weight n,, the particle density.*’

This section explains how § can be obtained as a limit of spectral
measures of the flow under the function f(x)=14{l 4(x). That will
prove the following proposition.

Proposition 3.1. If the flow under f is weakly mixing, then S is
continuous apart from the delta function at 0. If the flow has purely
singular continuous spectrum on # *, then S is purely singular continuous
apart from the delta function at 0.

Proof. Let w=0 be a C”-function with support in [x| <p<1. Puta
copy of @ at every x,; i.e., consider the function

p=@*p (&)

where * denotes convolution. Its autocorrelation is given by'®’

L -

,(x)= lim (20)7" [ oty +x1p00) ay

—L

=(w*®D)*y

where @{x)=cw(—x) and the bar denotes complex conjugation. Now the
structure factor of p is §,=|d|* §.

Observe that |@|?>0 in some neighborhood (—a, a) of the origin,
since ®(0)=[wdx>0. For ¢>0 the function w,x):=¢ 'w(x/e) has
Fourier transform @,({) =ed(&l), so |d()|?>0 for {e(—a/e, aje). Hence
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7 is purely (singular) continuous on R\{0} if and only if §, is purely
(singular) continuous on ( —a/e, 0) U (0, a/e) for every ¢ > 0.
Define g, € # by

y) if 0<y<yp
gy, y)i=coly—f(x) il fIx)—np<y<gx) (9)
0 otherwise

Choose uy,=0. If p,=cw *y, then p(t)=(U, g, )(0, 0); replacing (0, 0) by
T,(0,0) translates the structure. Now

L
7, ()= lim (L)' [ p(r+x) 50 dr (10)
L— o —L
L
= lim (2L)—'f U(Z. U, g,)(0,0) dr (11)
L— > —L
=(g..U.g.) (12)

Equation (12} holds because (i) the flow is uniquely ergodic and (ii) the
function g, is continuous (ref. 8, Theorem 1.8.2).

If the flow is weakly mixing (has purely singular continuous spectrum
on #*), then the Fourier transform of (12) is a measure that is purely
{singular) continuous apart from a delta function at 0. This also shows that
S=7 is purely discrete if the flow has purely discrete spectrum. |J

The significance of Proposition 3.1 is that it links S to spectral
measures of a dynamical system—the flow under f—that can be explicitly
analyzed. Given any configuration of points (in any dimension) with a
hard-core condition, one can consider the set of all its translates and close
it in the topology of hard-sphere particle systems (see, e.g., ref. 9, Appendix
B). This gives a compact metric space with an action of RY by translations.
Dworkin '?’ showed in this general setup that the Fourier transform of the
autocorrelation of (8) is a spectral measure of the unitary group action of
R on the L*-space of an ergodic measure on this metric space.

4. SPECTRUM OF THE FLOW

This section studies for which parameters a, f, £ the flow under the
function 1+ &1, 4y(x) is weakly mixing or not. The flow is weakly mixing
if (5) has no solutions € L}(T) for any A#0; it is not weakly mixing if
there is 1 #0 for which (5) has a solution in L*T). To make use of results
from ergodic theory we need some definitions.
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A measurable function g: T — T 1s called a multiple of a coboundary
(in, e.g., ref. 11) or a projective coboundary (in, e.g., ref. 12) if there is an
a€ R for which there is a measurable : T — T such that

Y(x +a) = e g(x) Y(x) (13)

(Lebesgue-a.e.). The function g is called a coboundary if there is a
measurable solution to (13) with a=0. Proving existence or nonexistence
of solutions to (13) for given g and « is a classic problem in ergodic theory
(see, e.g., refs. 13-15).

The question for which parameters «, 8, s the function g, (x):=
exp{2misl o p(x)} is a multiple of a coboundary has been studied, among
others, by Merrill.'" Since f(x) =&l 5(x)+ 1, Eq. (5) can be written as

lﬂ(.\’+“)=eznug/1.a.§(x) Y(x) (14)

and we see that A is an eigenvalue of the flow under f if and only if g, ;-
is a particular multiple of a cobounday, namely with a=A. In this way,
results from ref. 11 can be used to prove that the flow under fis or is not
weakly mixing for certain parameters. [ Note that |y(x)| is constant a.e.
since « is irrational, so ¥ € L*(T) if ¢ is measureable. ]

The solvability of (13) depends on the continued-fraction representation
[a,, a5,...] of a. The a, are called partial quotients of a. We say that a has
bounded partial quotients if there is an N such that a, < N for all n. Otherwise
it has unbounded partial quotients. Lebesgue-a.e. « has unbounded partial
quotients (ref. 16, Theorem 196). A continued fraction is called periodic if
there are integers k, L >0 such that a,=a,, , for all /> L. A number a has
a periodic continued-fraction representation if and only if it is a quadratic
number, ie., if pa®+qa+r=0 for some p, q, r€ Z (ref. 16, Theorem 176).

Proposition 4.1. For every irrational «, if f={ka} for some
integer k, then for all £e R the flow under f has eigenvalues A = (ma + n)/
(&{ka} +1), with n,me Z.

Proof. If = {ka} then for all seR the function g, , is a multiple of
a coboundary with a= —s{ka} +ma+n,mneZ [see pp. 326-327 of
ref. 11; the solutions to (13) are also given there]. If «, 8= {ka} and & are
fixed, then s=A¢ and the condition that a=1 imply A= (mo+n)/
({ka} +1). 1

The numbers o« and 1/¢ are called rationally independent if
mo +n/¢ = p has no solutions m, n, pe Z except m=n=p=0. Otherwise
they are called rationally dependent. Note that rational independence
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implies that £ is irrational if « is irrational. The next proposition shows that
the flow under f'is not weakly mixing if « and 1/£ are rationally dependent.

Proposition 4.2. For every irrational « and every f, the flow
under f has an eigenvalue A =m/¢ for some me Z if and only if & and 1/¢
are rationally dependent.

Proof. If A=m/¢ is an eigenvalue of the flow, then there is by (5) a
i € L*(T) such that

W(x +o) =Y (x) (15)

since /' =&l 5 + 1. This means that A is an eigenvalue of rotation over «.
Hence A=ra+s,r,5€Z (see, eg., ref. 7) and a« and 1/& are rationally
dependent.

Conversely, if & and 1/£ are rationally dependent, then m/& =ra + s for
some m, r, s€ Z. Since ra+ 5 is an eigenvalue of rotation over «, there is a
¥ € L*(T) such that

l/](x+a)=62ni(l-a+.\-)lp(x) (16)

and this ¥ satisfies (5) if A=m/¢. |

Proposition 4.3. If o has bounded partial quotients and is
rationally independent of 1/&, then the flow under fis weakly mixing if and
only if §# {ka} for all ke Z.

Proof. If the flow under f is weakly mixing, then f# {ka} by
Proposition 4.1.

Conversely, if  # ka, then Theorem 2.4 in ref. 11 gives that g, , is not
a multiple of a coboundary if s#0. Since £ >0, s=A¢=0 (mod 1) gives
A=m/¢& for some m e Z. But by Proposition 4.2, 1 =m/¢ is an eigenvalue of
the flow under f if and only if « and & are rationally dependent. ||

Note that this proposition shows that § is continuous apart from a
delta function at"0 in the case f=1/2, « =72 if and only if 1/¢ is rationally
independent of «. These are the parameters considered by Aubry et al.-?
Since almost every « has unbounded partial quotients Proposition 4.3
applies to a set of a’s of Lebesgue measure 0. Note, however, that Proposi-
tion 4.3 suffices to prove the results in the next section.

To treat the case of «’s with unbounded partial quotients, we shall use
the following result of Katok and Stepin.!'*) The condition on « is equivalent
to a having unbounded partial quotients.
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Proposition 4.4.''Y Suppose there is a sequence p,/q, of
irreducible fractions such that hm, _, . ¢ Jx — p,/q,| =0. Suppose that f
satisfies

=1

lim sup min q, |5 —k/g,| >0 (17)

n— x

Let h(x):=n 110 (X)) +1:114(x), where |n,|=|n,1=1 and 5, #n>.
Then the equation

Y(x+a)=h(x)y(x) (18)

has no nonzero solutions y e L} T).

Proposition 4.5. The set B:={feT|pf satisfies (17)} has
Lebesgue measure 1.

Proof. Since « has unbounded partial quotients, we can assume that
q./.+1<1/2 for all n by taking a subsequence of the p,/q,. Let 6 <1/4.
Then Bc B :={f|limsup,_ . miny_, |q;8—k| <J}. We will show that
the Lebesgue measure |B'| of B’ is zero.

Let B,:={f|miny_, [¢;8—k|<6}. Then B'= Ui Nizo Biwk
Note that B consists of ¢, closed intervals of length 25/g,. If I is any inter-
val, then [B 1| is not more than the number of intervals of B, intersecting
I times 26/q;, 1e., |B; nI| <[ q,;[1]7126/q;, where [x7] is the integer satisfy-
ing [x7—1<x<[x7. Hence

IBijj+l n o nBj+k|
sgjrq/‘+126/qjjr[]j+225/qj+lj"'rqj'+k25/[]j+k—11 25/(/j+k

<qi{q;+120/q;+ INq;4220/q; 1+ 1) - (@4 £20/q k-1 + 1) 26/q, 4k
<(20+%%26-0 as k- w

This proves that |B'|=0. |}

Proposition 4.6. If « has unbounded partial quotients, then for
Lebesgue-a.e. § the flow under f is weakly mixing for all & such that 1/¢ is
rationally independent of a.

Proof. Let « have unbounded partial quotients and suppose that 1/¢£
is rationally independent of a. Let fe B; the set B has full Lebesgue
measure by Proposition 4.5.

Suppose the flow is not weakly mixing. Then there is a A#0 and a
¥ € L*(T) such that (5) holds. Proposition 4.4 shows this can only happen
if n, =7, where , =¢e>*1+3) and 5, =¥ It follows that i=m/¢ for
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some me Z. But then « and 1/£ are rationally dependent by Proposition
42. 1

Corollary 4.1. If « is rationally independent of 1/&, then the struc-
ture factor S is a continuous measure apart from a delta function at 0:

(1) If « has bounded partial quotients, if and only if ko (mod 1)
for any integer k.
(i) If « has unbounded partial quotients, for Lebesgue-a.e. f.

Proposition 4.6 also follows from results by Veech''*’ and Steward,!”’
(see ref. 11 and pp. 792-793 in ref. 18). In fact, these results give the slightly
stronger conclusion that the flow is also weakly mixing for all irrational a,
all & such that 1/£ is rationally independent of «, and all rational f
(Theorem 1.12.5.d in ref. 18). Note, however, that we have not excluded the
possibility that the flow can fail to be weakly mixing for some a with
unbounded partial quotients, a £ such that 1/¢ is rationally independent of
a, and a f that is not a multiple of «.

5. PURELY SINGULAR CONTINUOUS SPECTRUM

Simon’s Wonderland Theorem'®’ can now be used to prove that for
generic o the flow has purely singular continuous spectrum on #*.
Knill''” has recently used the Wonderland theorem to give a new proof
prove of the fact that, in the weak topology, measure preserving transfor-
mations generically have purely singular continuous spectrum in the
orthocomplement of the constant functions. The Wonderland Theorem can
be formulated as follows. Let % be a complete metric space of self-adjoint
operators on a separable Hilbert space for which convergence in the metric
implies strong resolvent convergence. Suppose the sets of operators that
have purely continuous spectrum and purely discrete spectrum are dense in
Z'. Then there is a generic set in & of operators that have purely singular
continuous spectrum. (Recall that a set is called generic if it is a dense G;.)

Proposition 5.1. Suppose that for some f, ¢ the flow is weakly
mising for a dense set of «. Then there is a generic A5 : < T such that the
flow with parameters «, f, & has purely singular continuous spectrum on
A+ forall ae Ay ..

Proof. Note that # depends on f and ¢ but not on «. Take #* as
Hilbert space. Write U? to stress the dependence on «. By Stone’s theorem
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there is a self-adjoint operator C* on s# such that U =exp(2nitC*). The
spectral measures duy of C*, defined by

J‘eZni,{l d/l; — (¢, e.’ZniIC“¢)

(see e.g., p. 263 in ref 20), coincide with those defined for U7 in (6). Let
Z={C*|aeT} with the metric of T. If «,—>a in T, then U} - U?
strongly in s for each ¢ This implies that C* — C* in strong resolvent
sense (see, e.g., Theorem VIIL2] in ref 20).

By the hypothesis of weak mixing, there is dense set of U with purely
continuous spectrum on # *. For rational « the flow is quasiperiodic (T
partitions into finitely many intervals on which the period is constant) and
therefore has purely discrete spectrum. Hence the Wonderland Theorem
implies the conclusion of the theorem. ||

Proposition 5.2, For every fe T and every irrational ¢ there is a
generic set A; . =T such that for all xe 4, . the flow with parameters «,
B. &€ has purely singular continuous spectrum on .

Proof. The numbers x,,=\/;_7 {mod 1), with p a prime number, are
rationally independent. There is at most one prime p, such that ma, =kf
(mod 1) for some non-zero integers m, k, and at most one prime p, such
that «,, is rationally dependent on 1/£. Hence there is a prime p, such that
a=a,, is rationally independent of # and 1/{. Then ma, =kpB (mod 1) has
no solutions in Z other than m =4k =0. Since any quadratic number has a
periodic continued fraction and hence bounded partial quotients, the flow
under f with parameters no, B, & is weakly mixing by Proposition 4.3.
The numbers na are dense in T. Hence Proposition 5.1 gives the desired
result. |

Corollary 5.1. For every fe T and every irrational ¢ the structure
factor S is a purely singular continuous measure apart from a delta func-
tion at 0 for a generic set of «’s.

6. DISCUSSION

To conclude, we would like to mention some results from the
literature. Von Neumann'”’ proved that the flow under f is weakly mixing
for all irrational « if f is piecewise C' with points of discontinuity x,, ..., X,
at which (i) the left and right limits of /' exist and (ii) it has jumps &, =
lim, ;.. flx;)—lim,, . f(x;) such that >¥_, J,#0. This shows that it is not
really remarkable for a model of atoms on the line of the form u,, —u,_, =
f{na) to have a structure factor that is continuous apart from the delta
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function at zero. Von Neumann'” gives an example of a continuous

function for which the flow is weakly mixing for certain «. Indeed, he
conjectures that the flow should be weakly mixing for “most” continuous
functions. In this direction Kogergin®!’ has proved that for every irrational
a and every L'-function />0 on T there exists a continuous function 4f
with sup,.,|4f(x)] arbitrarily small such that the flow under f + Af is
strongly mixing, hence weakly mixing. This shows that discontinuities in f
are not necessary for weak mixing.

Kodergin®® has also shown that the flow is not strongly mixing if f
has bounded variation. It follows that 4 # ¢J (cf. ref. 23, p. 50) if f(x) =
1+ &1 p(x) whenever «, B, and ¢ are a such that the flow under f is
weakly mixing. So if x is replaced by p of (8), which amounts to modeling
the structure by electron clouds instead of pointlike atoms, then the struc-
ture factor (ie., the Fourier transform of y,) typically has a singular
continuous part whenever the flow is weakly mixing. Here “typically”
means that every ball in s around g, [ g, =g, in (9)] contains a g/, for
which the structure factor has a singular continuous part.
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